PHYSICAL REVIEW E 72, 036215 (2005)
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We study the effect of quasiperiodic forcing on a system of coupled identical logistic maps. Upon a variation
of system parameters, a variety of different dynamical regimes can be observed, including phenomena such as
bistability and multistability. At the bifurcation to bistability, in a manner reminiscent of attractor expansion at
interior crises, there is an abrupt change in the size of attractor basins. In the bistable region, attractor basins
undergo additional bifurcations wherein holes and islands are created within the basins when system param-
eters change. These can be understood by examining critical surfaces for the coupled system.
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I. INTRODUCTION

The dynamics of coupled nonlinear systems has attracted
much interest in the past decades in many areas of science.
Such systems have been modeled by coupled ordinary differ-
ential equations or through coupled map lattices [1]. A num-
ber of interesting complex dynamical phenomena that have
been theoretically and experimentally revealed in investiga-
tions [2—4] include antiphase states, spatiotemporal intermit-
tency, attractor crowding, turbulence, traveling waves, and
synchronization.

In this paper we consider the influence of external driving
by a force that is quasiperiodic in time on coupled nonlinear
systems. Such forcing has been extensively studied in the
past few years for a variety of reasons, including the fact that
with quasiperiodic driving, the dynamics can be both aperi-
odic and stable, when confined to so-called strange noncha-
otic attractors (SNAs) [5,6]. These attractors possess only
nonpositive Lyapunov exponents (LEs) and are hence non-
chaotic, and they are also typically geometrically fractal
(hence strange).

We examine the simplest case, where two coupled sys-
tems are driven by a common quasiperiodic force. The model
we study in some detail consists of coupled logistic maps, a
system whose behavior, both in the absence of driving [7,8]
as well as in the absence of coupling [5,9,10] has been ex-
tensively studied in the past. This permits a clearer identifi-
cation of new features of the dynamics in the coupled and
forced system. Uncoupled logistic maps individually follow
the period-doubling route to chaos, while in general, it is
known that quasiperiodic forcing transforms periodic attrac-
tors to quasiperiodic ones, truncates the period-doubling cas-
cade, and makes a transition to SNA possible [5,11,12].

A striking phenomenon that can be observed in coupled
systems is synchronization [13]. Even when the dynamics is
chaotic, namely showing sensitivity to initial conditions,
Pecora and Carroll [14] showed that identical (or nearly
identical) nonlinear systems can be synchronized if coupled
through a common drive signal. The motion of the coupled
system eventually (i.e., after transient unsynchronized dy-
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namics) takes place on an attractor that is contained in a
lower-dimensional subspace of the entire phase space: this is
the “synchronization manifold” [15]. The synchronization
manifold is an invariant symmetric subspace (ISS), and the
stability of synchronization can be measured through the
transverse Lyapunov exponent [8,16].

Identical quasiperiodically driven uncoupled systems syn-
chronize on SNAs [17]. When the coupled system is driven
quasiperiodically, synchronization becomes possible under
three separate scenarios: the attractor in the invariant sub-
space can be (i) chaotic and strange, (ii) nonchaotic and
strange, or (iii) nonchaotic and nonstrange. Furthermore, and
similar to the unforced case [7,8], there are a number of
bifurcations and transitions both in the dynamics as well as
in the nature of the attractor basins.

Very recently, Neumann, Sushko, Maistrenko, and Feudel
[18] have studied a related coupled logistic map system with
additive quasiperiodic driving. While the effect of additive
forcing is similar to multiplicative driving that we employ,
the focus of their study is on the synchronization behavior,
and thus it is somewhat different from that of the present
work, which examines the basins of attraction of coexisting
attractors. Nevertheless, the two studies are complementary,
and provide a fairly detailed view of quasiperiodically driven
coupled logistic maps. Coexisting synchronized as well as
nonsynchronized SNAs have also been studied in a different
system of coupled quasiperiodically forced logistic maps
[19].

Multistability—the coexistence of two or more attractors
with separate basins of attraction in phase space—is typical
in nonlinear dynamical systems [20-22]. As a control param-
eter varies, attractors may appear, disappear, or change sta-
bility through different bifurcations. In some cases the bifur-
cations of attractors are accompanied by transformations of
their basins of attractions so that their structure may be very
complicated, or even fractal. In the present work we study in
detail the bifurcations leading to bistability in driven coupled
logistic maps, and describe the basin boundary bifurcations
in the region of bistability.
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The coupled system we study here is described in the
following section. Since there are several parameters in the
model, we restrict our analysis to a typical region in the
parameter space and discuss the different dynamical regimes
that occur. When the control parameter varies there is a se-
quence of bifurcations, both within the ISS as well as outside
it. These give rise to different stability regions, including the
region of bistability with coexisting synchronous and asyn-
chronous attractors. These phenomena are discussed in Sec.
IIT for particular but representative values of the system pa-
rameters. The size of the basin of the synchronized attractor
is seen to undergo an abrupt increase at a particular param-
eter value: this feature is similar, both qualitatively and quan-
titatively, to the dynamical behavior at an interior crisis [23].
A basin boundary bifurcation occurs in the forced coupled
system in the bistability region and this can be understood
through an extension of the theory of critical curves [24]
presented in Sec. IV. We conclude this paper with a discus-
sion and summary in Sec. V.

II. SYSTEM AND DYNAMICS

Consider two symmetrically coupled identical logistic
maps, both subject to a common quasiperiodic parametric
modulation,

Xn+l = a[l + 6008(277011)]xn(1 _xn) + ﬁ(yn _'xn)’

Yne1 = Ct’[] + ECOS(Zwen)]yn(l _yn) + IB(xn _yn)s

0,,,=60,+w, modl. (1)

The variables of the two maps are denoted by x and y for
clarity. We retain the skew-product structure of earlier stud-
ies [5] of quasiperiodically driven systems; the 6 dynamics is
a rigid irrational rotation, unaffected by the variation of the
other variables. The driving frequency is an irrational num-
ber, the inverse of the golden mean ratio, w=(\5-1)/2. Pa-
rameters for the maps governing evolution of the variables x
and y have been taken to be identical for convenience, and
the coupling is symmetric.

The phase space of the three-dimensional system is I?
X 8!, I being the unit interval. The dynamics (1) leaves the
phase space invariant in the absence of coupling (i.e., 8=0).
For €#0, it is clear that the motion will remain bounded in
this region as long as af 1+e€cos(276,)]e [0, 4]. Thus for
any a<4, the largest allowed value of € is 4/a—1. The
driving parameter is rescaled as €' =€/(4/a—1) and we study
the system for 0<e¢’ < 1. The main bifurcation parameter is
a.

Since the dynamics of the € variable is uniform and er-
godic, it is convenient to consider the reduced phase space
spanned by the variables x and y. The synchronization mani-
fold, the plane {x=y, 6}, is invariant: a trajectory with initial
conditions in this manifold subsequently remains within the
manifold. Further, since the coupling term vanishes, synchro-
nized dynamics is effectively described by the single forced
logistic map,

X1 = f(x,,0,) = o 1 + € cos(276,) Ix, (1 - x,),
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Yo+l = Xn+ls

0,,1=6,+w, modl. (2)

The within-ISS Lyapunov exponent is

1 N
A= lim—, In|f’ (x;,6)
N~>mNi=1

; 3)

while in the direction transverse to the synchronization mani-
fold, the transverse LE is

N
A, = lim 12 In|f' (x;,6,) — 2. (4)
Ni:l

N—oo

Regions in parameter space where the transverse
Lyapunov exponent A | is negative are characterized by syn-
chronization with the attractor in the ISS being stable (or at
least weakly stable [25]). Upon variation of system param-
eters, synchronization can be lost via a blowout bifurcation
[18,26] if the transverse LE becomes positive.

The case B=0, namely the (single) quasiperiodically
forced logistic map has been studied extensively in the con-
text of strange nonchaotic attractors [5,9,10]. In the absence
of quasiperiodic forcing, i.e. for € =0, the logistic map dis-
plays a period-doubling cascade to chaos as the bifurcation
parameter « is varied [27]. With quasiperiodic driving the
periodic attractors of the logistic map become quasiperiodic
attractors: period-n orbits of the logistic map are converted
into tori with n branches. Besides the usual chaotic attractors,
strange nonchaotic attractors exist in the forced system. In
general, quasiperiodic forcing suppresses the infinite cascade
of period-doubling bifurcations; only a finite number of torus
doublings occur and these are often shifted to larger values
of the parameter [10]. Strange nonchaotic dynamics typically
occurs in the transition from quasiperiodic torus attractors to
chaotic attractors [5].

The case of coupled logistic maps without external forc-
ing, namely B# 0, € =0 has been studied extensively [7,8].
This coupled system exhibits multistability, namely the co-
existence of numerous attractors in phase space. The basin of
attraction of the synchronized attractor in the ISS can un-
dergo the so-called riddling bifurcation [8] when the attractor
itself becomes weakly stable.

The phase diagram in the «, €' parameter plane is shown
in Fig. 1 for 8=0.01. A variety of dynamical behaviors can
be observed upon variation of the parameters «, B, and e,
and the cases depicted in Fig. 1 (see the caption) are typical.
The different regions of stability are indicated via shading:
the region where only the synchronized attractor exists is
shown in dark gray, while the region where both synchro-
nized and nonsynchronized attractors coexist (namely bista-
bility) is shown in light gray. There is a loss of stability of
the ISS attractor in a blowout bifurcation at the right bound-
ary of the dark gray region. In the unshaded region, the at-
tractor outside the ISS is asynchronous. The transition to
bistability, shown by a dark line on the left boundary of the
light gray region, is marked by the coexistence of the syn-
chronous attractor in the ISS with the asynchronous attractor
outside the ISS. There are small regions where only the syn-
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FIG. 1. (Color online) Partial phase diagram in the « ,€’ param-
eter plane for 8=0.01. The region of complete synchronization is
shown in dark gray and the region of multistability in light gray.
The white region corresponds to A | >0. The subcritical pitchfork
bifurcation leading to bistability is shown by a line at the boundary
of light gray region and the transition to bistability is marked as BS.
The basin bifurcation line is shown in the bistability region and the
transition is marked BB.

chronous attractor exists within the ISS occur at the bound-
aries of the light gray region on the other side.

III. TRANSITIONS TO MULTISTABILITY

In this section we examine mechanisms of the occurrence
of multistability, namely the coexistence of two or more at-
tractors for a fixed set of parameters [28,29]. We also inves-
tigate the evolution of the corresponding attractor basins, the
set of all initial conditions that converge to it asymptotically
under the dynamics. The basins are numerically computed,
starting with a grid of 10% X 10* different initial conditions in
the x—y plane and iterating for a sufficiently long time (here
10 iterations). For most of the parameter values studied here
we observe coexisting attractors: one in the ISS and one (or,
rarely, more) outside the ISS. When there is only the attractor
in the ISS, i.e., only a synchronized state exists, then it is
also a global attractor: all points in the phase space are at-
tracted to it.

We first discuss and review the bifurcations in the un-
forced case of Eq. (1) with € =0 [30,31]. The coupled sys-
tem is invariant under the exchange of variables and there-
fore the system has either symmetric or nonsymmetric
solutions. The symmetric solutions of the coupled system are
the solutions of the logistic map because the coupling term
then vanishes.

The symmetric fixed point (x;,x,) of the coupled system
is given by

PHYSICAL REVIEW E 72, 036215 (2005)

a-1
Xf= o . (5)

The stability of a period-p orbit of the coupled system will
be determined by the eigenvalues of the Jacobian matrix,

Alre)-8 B ]
'Hl B f)-Bl

For the symmetric fixed point x; (Eq. (5)) the eigenvalues
are

J

m=2-aand 7,=2-a-2p. (6)

There are two period-doubling bifurcations in the coupled
system, and these give rise to unstable symmetric and stable
asymmetric period-2 orbits at «=3 and a=3-2p8, respec-
tively. The symmetric period-2 orbit is (xj,x}), (x3,x3),
where

X =a+\b, (7)
with

-1)°-4
a=—and b2=%.
a 4o

(8)

The eigenvalues of the symmetric period-2 orbit (see Eq.
(7)) are

7]1:5—(a—1)2 and 7]225—(a—1)2+4ﬂ(ﬂ+1).

)

The symmetric period-2 orbit that appears at @=3 is unstable
and changes stability in a subcritical pitchfork bifurcation at

a=1+2(1+pB+pH)". (10)

The stable symmetric period-2 orbit loses stability again in
another period-doubling bifurcation at =1+ V6. The assym-
metric period-2 orbit (x{,y{), (x5,y5) that appears at a=3
—2 is stable before it undergoes a Hopf bifurcation. Hence
there are regions in the coupled system where there are two
or more coexisting attractors, depending on the values of the
control parameters. These different regions of stability of the
unforced coupled map system are located along the € =0
line in Fig. 1.

For € =0.5 at B=0.01, corresponding to the arrow de-
noted by BS in the phase diagram, Fig. 1, there are regions
with synchronization only (dark gray) or regions with coex-
isting attractors (light gray) depending on the nonlinearity,
and the nonzero LEs for the system, Egs. (1), are shown in
Fig. 2(a) as a function of the parameter a. The transverse
Lyapunov exponent and the Lyapunov exponent in the ISS
are given in Fig. 2(b). Since there can be coexisting attrac-
tors in the system, we compute the spectrum of LEs as fol-
lows. Starting with initial conditions of x and 6 fixed at 0.5
and 0O, respectively, a number of different initial y’s are
sampled in the interval [0, 1]. Since the system has three LEs
for a given initial y, there can either be two distinct nonzero
LE:s if there is a single attractor, or n pairs of distinct nonzero
LEs when there are n distinct attractors. (The irrational rota-
tion in € always gives a zero LE). Therefore in the bistability
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FIG. 2. (Color online) (a) The two largest Lyapunov exponents
N1 2. and (b) the transverse and in-plane Lyapunov exponents for the
invariant subspace, as a function of the parameter «.

region C of Fig. 2, there are two distinct pairs of LEs.

Different bifurcations and transitions can be detected in
the variation of the LEs as a function of «. A negative trans-
verse Lyapunov exponent gives stable dynamics in the ISS,
and depending on ancillary properties, the dynamics can be
either on a synchronous torus, synchronous SNA, or even
synchronized chaotic dynamics. The different regimes in Fig.
2(a) are labeled for convenience and we describe the dynam-
ics in detail below.

Prior to the first period-doubling bifurcation at «
~3.2151, there is a single attractor in the phase space, lo-
cated in the synchronization manifold (region A). In region
B, a nonsynchronous stable torus attractor with two branches
outside the ISS coexists with a saddle torus in the ISS. There
is another torus-doubling bifurcation of the saddle in the ISS
in region B that gives rise to an unstable two branch saddle.
The two branch saddle in the ISS becomes stable at «,
~3.229 04 through a subcritical pitchfork bifurcation (region
C). The phase portraits in the (x,y) and (6,x) planes are
shown in Fig. 3 for the dynamics in the regions A, B, and C
of Fig. 2. In the regions D and E, there are globally stable
torus and strange nonchaotic attractors respectively. In region
F, the attractor in the ISS is a SNA, while outside the ISS, the
attractor is chaotic, while in region G, the attractors both in
and outside the ISS are chaotic.
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FIG. 3. (Color online) Phase portraits in the (x,y) and (6,x)
planes for dynamics that is synchronized (black) and desynchro-
nized (red), at different values of a. (a)—(b) The synchronous attrac-
tor at @=3.21 (region A of Fig. 2); (c)—(d) the synchronous and
period 2 asynchronous attractors at @=3.22 (region B of Fig. 2);
(e)—(f) period 2 synchronous and asynchronous attractors at «
=3.25 (region C of Fig. 2).

These dynamical transitions are naturally accompanied by
changes in the attractor basins. In the quasiperiodically
forced coupled system, we have symmetric and asymmetric
quasiperiodic orbits with two branches. For a < «,, all initial
conditions outside the ISS are attracted asymptotically to the
nonsynchronous attractors outside the ISS. As the control
parameter crosses the critical value a,.=~3.229 04, some of
the initial conditions (x,,y,6,) lie in the basin of the syn-
chronous attractor inside the ISS. The basins of the coexist-
ing attractors in the bistability region are shown in Fig. 4 for
different values of a. The relative volume of the basin of the
synchronous attractor can be measured as the fraction of ini-
tial conditions f that lead to synchronization,

== (1)

N, being the number of points converging onto the synchro-
nous attractor in the ISS, out of N, initial conditions. The
dependence of f on « is shown in Fig. 5, the initial value
0,=0.25 being fixed.

At the transition to bistability, the basin volume
actually increases as a power [32] in the (excess) nonlinear-
ity parameter,
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FIG. 4. The basin of attraction of synchronous dynamics (the
dark regions) showing the bistable state of the system at (a) «
=3.229 04, (b) @=3.2291, (c) a=3.2305, and (d) a=3.2511.

f~(a-a.)?, (12)

as can be seen in the inset of Fig. 5. The scaling exponent y
obtained from numerical simulations is =0.3, with a,
~3.229 04. It should be noted that the attractors themselves
barely change under variation of the parameter. In the case of
the unforced coupled map we find the appearance of bista-
bility with a scaling exponent y=~0.13 for 8=0.01 and the
critical value of a from Eq. (10) as «,.=3.010 074 62. The
sudden increase in the size of the basin resembles a crisis,
although at, for example, an interior crisis [33], this usually
pertains to the size of the chaotic attractor itself [34] and not
the basin per se. Interior crises are also known to occur in
quasiperiodic systems [35,36] but with different exponents,
suggesting that the mechanisms underlying basin expansion
and attractor expansion are probably different. We are pres-
ently studying these systems further with a view to under-
standing these differences [37].

IV. BASIN BIFURCATIONS

The manner in which attractor basins change with param-
eter have been studied both for a single map, as well as in
coupled (but without forcing) maps [38,39]. We combine
these two approaches to study the basin bifurcation in the
forced coupled system.

Critical manifolds have been an important tool in the
study of noninvertible maps [24,40], namely those that are
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FIG. 5. The crisislike increase in the attractor-basin volume can
be gauged by the fraction f of initial conditions that lead to syn-
chronous dynamics as a function of the control parameter a. The
inset shows scaling of f vs (a—a,) with @.=3.229 04... . The tran-
sition, marked by the arrow, to a single synchronous attractor, oc-
curs at o~ 3.2688... .

characterized by the fact that a point can possess a different
number of preimages, depending on where it is located in the
state space. The fundamental role of critical points in one-
dimensional noninvertible maps has been extensively studied
by several authors, in particular by Gumowski and Mira [41].
For a point y for a given map f in the interval /, a preimage
of rank 1 is a point x in [ that is mapped to y:y=f(x). One
can divide the interval / in zones z,,z1, ..., Where z,, is the set
of all points having n distinct preimages [24].

Critical points for a noninvertible map thus have at least
two preimages, and are those points where the determinant
of the Jacobian of the map vanishes. For one-dimensional
maps they correspond to local extrema; the present system,
for the case e=[B=0, reduces to the logistic map and is an
example of a z, map with critical point x=0.5. For bounded
iterated sequences, the iterates of the critical points deter-
mine either the boundary of an absorbing region or that of
the chaotic attractor [41].

Generalizing this approach to two dimensions yields criti-
cal curves instead of points [24,40,42]. Gardini et al. [38]
have studied a system of two coupled logistic maps and have
determined the properties of global bifurcations through a
detailed examination of the role of critical curves. Dynamical
phenomena such as band merging or interior crises, which
have some similarity to phase transitions, can also be under-
stood by examining the dynamics of the critical points in the
map [33].
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In two-dimensional noninvertible maps, the critical curves
are computed as follows. Let M:R>— R? be a smooth two-
dimensional noninvertible map. A rank-1 critical set LC is
the set of points having at least two rank-1 preimages on the
set LC_;. Hence LC is generally the image of LC_; that is
determined by the condition that the determinant of the Jaco-
bian J of M vanishes. The critical curve LC,, is then the rank
—(m+1) critical set of M:LC,,=M"*'(LC_,), m=0,1,2,....

Feudel er al. [43] have generalized these notions to the
case of three dimensions. They specifically considered a sys-
tem of two coupled logistic maps forced by a circle map, and
showed that the destruction of tori correlates with the behav-
ior of the iterates of the critical surfaces. In another exten-
sion, basin bifurcations in a quasiperiodically forced system,
corresponding to the appearance of islands, was also ex-
plained via critical curves [39].

Adapting this approach to the present instance, for the
three-dimensional map M (Eq. (1)), we obtain critical sur-
faces instead of critical curves. The rank —(m+1) critical
surfaces can be defined as SC,,=M"*(SC_,), m=0,1,2,...,
and the set SC_; is determined by the following condition for
the Jacobian matrix J:

det J(x,y,6) =0. (13)

For the map M, the two-dimensional surface SC_; is given
by the union of the two surfaces SC_; , and SC_; ;,, which
both fulfill the condition

1 .\ B(1-2y)
2 2{of1+e€cos2mh)]2y-1)+ B}

At fixed a=3.23 (see arrow BB in Fig. 1) there is a bi-
furcation in the basin structure as €’ increases through a
critical value €= 0.276. The relative volume of the basin of
the ISS attractor, shown in Fig. 6(a) for fixed initial value of
v;=0.25, decreases linearly as a function of €' at the basin
bifurcation. Since it is difficult to study critical surfaces and
basin structure in three dimensions, we fix the variable y at
v;=0.25 and study the reduced critical curves in the two-
dimensional (x, 6) surface. (These are in fact cross sections
of the critical surfaces at the chosen value of y.) In general, a
basin bifurcation always results from the contact of a basin
boundary with a segment of a critical curve. (See Fig. 6)

The basin of the ISS attractor (in dark) is plotted together
with the critical curves in Fig. 7 for different values of the
forcing parameter, €. There are two groups of critical curves
that hit the basin boundaries at different control parameter
values and give rise to a sequence of three bifurcations that
result in the appearance of holes and islands. In Fig. 7(a), we
have shown the basin and the critical curves before the first
basin bifurcation, for € =0.25. The first change in the struc-
ture of the basin of the ISS attractor takes place at a critical
value €.,=~0.278 where white holes in the black basin are
created due to a touching of the critical curve LCs from the
upper set of the critical curves and the basin boundary of the
ISS attractor as shown in Fig. 6(b) and Fig. 7(b). The appear-
ance of the holes corresponds to the emergence of initial
conditions that converge to the asynchronous attractor within
the basin of attraction of the synchronous attractor.

X Y 6. (14)
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FIG. 6. (a) The fraction of initial conditions f that lead to syn-
chronous dynamics as a function of the control parameter €. (b)
The distance between the basin boundary and the critical curve LCj

and between the critical curves LC; and LCy, as a function of the
control parameter €' leading to different contact bifurcations.

A second change occurs at a bifurcation related to the
appearance of black islands of the ISS attractor basin within
the white basin of the attractor outside the ISS. This occurs
when the lower set of critical curves hits the boundaries of
the ISS attractor basin from the outside, as shown in Fig.
7(c). Thus, a portion of the basin of the non-ISS attractor is
diverted to the synchronous attractor.

The third modification of the basin structure is due to a
sequence of aggregations of islands and a merging of the two
bands of the ISS attractor basin, as shown in Fig. 7(d). To
estimate the bifurcation point of the merging, the distance
between the critical curves LC; and LC;, from the two
branches is calculated as a function of control parameter €’.
Figure 6(b) shows the corresponding bifurcation at €,
~(0.3076.

Thus, in all, there are three distinct bifurcations that lead
to specific changes in the basin structure. All of these can be
identified by examining contact bifurcations of critical sur-
faces and point to the special role played by critical points
and their extensions in multidimensional systems.

V. DISCUSSION AND SUMMARY

In the present work we have examined the case of two
identical, symmetrically coupled driven nonlinear systems,
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FIG. 7. (Color online) The basin of attraction of synchronous
dynamics (dark regions) in the bistable state of the system for a
=3.23 at (a) €' =0.25 (arrow A in Fig. 6(a)), (b) €' =0.28 (arrow B in
Fig. 6(a)), (c) € =0.30 (arrow C in Fig. 6(a)), and (d) € =0.31
(arrow D in Fig. 6(a)). The critical curves LC; in (b) are promi-
nently marked green and LCg in (c) is marked blue, and LC; and
LCy in (d) are green and blue, respectively.

namely coupled logistic maps with multiplicative quasiperi-
odic forcing. We have studied a limited but representative
region in parameter space, and seen that this system has a
rich variety of dynamics: quasiperiodic (torus) dynamics,
strange nonchaotic, and chaotic motion. Furthermore, the
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two systems can be synchronized or desynchronized, and can
have multiple coexisting attractors, namely bistability or
multistability.

A novel phenomenon observed at the onset of bistability
is the power-law growth of the volume of the basin of the
synchronous attractor. Although superficially similar to an
interior crisis [23] when the attractor volume increases ac-
cording to a power law, here the attractors do not change
significantly while their basins expand. Further, while it is
clear that the competing basins are interpenetrating, often the
basin boundaries are themselves smooth. It may be possible
to use the framework of interior crises to explain this phe-
nomenon when the basin boundaries are fractal and contain
embedded chaotic saddles [37].

Basin bifurcations in the bistability region are explained
via the concept of critical surfaces. After the first contact
bifurcation, holes appear in the basin of the ISS attractor and
correspond to points that converge to the other (asynchro-
nous) attractor. As the control parameter increases, there is a
creation of islands of points that go to the ISS attractor in the
basin of the other asynchronous attractor. As the number of
islands increase, the two bands of the ISS attractor basin
merge at a critical value of the control parameter. These three
bifurcations lead to characteristic changes in the structure of
the basins of attraction.

The initial explorations of coupled driven systems pre-
sented here need to be extended in a number of different
directions. The distinct regimes of synchronization suggest
that quasiperiodic driving could be used as a method for
control [44]. The implications of coupling a large number of
systems (on a coupled map lattice, for instance) and driving
them individually or collectively have not been studied in
any detail so far [45], and it can be anticipated that there will
be a wealth of new phenomena to uncover.
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